Microfluidic fabrication of hydrogel microparticles containing functionalized viral nanotemplates.

نویسندگان

  • Christina L Lewis
  • Yan Lin
  • Cuixian Yang
  • Amy K Manocchi
  • Kai P Yuet
  • Patrick S Doyle
  • Hyunmin Yi
چکیده

We demonstrate rapid microfluidic fabrication of hybrid microparticles composed of functionalized viral nanotemplates directly embedded in polymeric hydrogels. Specifically, genetically modified tobacco mosaic virus (TMV) templates were covalently labeled with fluorescent markers or metalized with palladium (Pd) nanoparticles (Pd-TMV) and then suspended in a poly(ethylene glycol)-based solution. Upon formation in a flow-focusing device, droplets were photopolymerized with UV light to form microparticles. Fluorescence and confocal microscopy images of microparticles containing fluorescently labeled TMV show uniform distribution of TMV nanotemplates throughout the microparticles. Catalytic activity, via the dichromate reduction reaction, is also demonstrated with microparticles containing Pd-TMV complexes. Additionally, Janus microparticles were fabricated containing viruses embedded in one side and magnetic nanoparticles in the other, which enabled simple separation from bulk solution. These results represent a facile route to directly harness the advantages of viral nanotemplates into a readily usable and stable 3D assembled format.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization.

We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and co...

متن کامل

Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.

Microfluidic technologies are emerging as an enabling tool for various applications in tissue engineering and cell biology. One emerging use of microfluidic systems is the generation of shape-controlled hydrogels (i.e., microfibers, microparticles, and hydrogel building blocks) for various biological applications. Furthermore, the microfluidic fabrication of cell-laden hydrogels is of great ben...

متن کامل

High‐Throughput Contact Flow Lithography

High-throughput fabrication of graphically encoded hydrogel microparticles is achieved by combining flow contact lithography in a multichannel microfluidic device and a high capacity 25 mm LED UV source. Production rates of chemically homogeneous particles are improved by two orders of magnitude. Additionally, the custom-built contact lithography instrument provides an affordable solution for p...

متن کامل

High-throughput Synthesis of Encoded Hydrogel Particles for Biosensing Using Contact Flow Lithography

We report an automated cost-efficient method for the high-throughput fabrication of graphically encoded hydrogel microparticles for use in multiplexed biosensing. By combining automated flow lithography in a multichannel microfluidic device with contact lithography and a high capacity 1-inch UV source, we improve our production rate of chemically homogeneous particles by at least two orders of ...

متن کامل

Sustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions

Background: Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. Alginate hydrogel (ALG) and poly (lactic acid-co-glycolic acid) (PLGA) microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 26 16  شماره 

صفحات  -

تاریخ انتشار 2010